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Abstract: The dynamic behavior of an interface crack in magneto-electro-elastic composites 

under harmonic elastic anti-plane shear waves is investigated for the permeable electric 

boundary conditions. By using the Fourier transform, the problem can be solved with a pair 

of dual integral equations in which the unknown variable was the jump of  the displacements 

across the crack surfaces. To solve the dual integral equations, the jump of the 

displacements across the crack surface was expanded in a series of Jacobi polynomials. 

Numerical examples were provided to show the effect of the length of the crack, the wave 

velocity and the circular frequency of the incident wave on the stress, the electric 

displacement and the magnetic flux intensity factors of the crack. From the results, it can be 

obtained that the singular stresses in piezoelectric/ piezomagnetic materials carry the same 

forms as those in a general elastic material for anti-plane shear problem. 
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Introduction 

Composite material consisting of a piezoelectric phase and a piezomagnetic phase has drawn 

significant interest in recent years, due to the rapid development in adaptive material systems. It 

shows a remarkably large magnetoelectric coefficient, the coupling coefficient between static 

electric and magnetic fields, which does not exist in either constituent. The magnetoelectric 

coupling is a new product property of the composite, since it is absent in each constituent. In 

some cases, the coupling effect of piezoelectric/piezomagnetic composites can be even obtained a 

hundred times larger than that in a single-phase magnetoelectric material. Consequently, they are 
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extensively used as electric packaging, sensors and actuators, e . g . ,  magnetic field probes, 

acoustic/ultrasonic devices, hydrophones, and transducers with the responsibility of electro- 

magneto-mechanical energy conversion [1] . When subjected to mechanical, magnetic and 

electrical loads in service, these magneto-electro-elastic composites can fail prematurely due to 

some defects, e . g .  cracks, holes, etc. arising during their manufacturing process. Therefore, it 

is of great importance to study the magneto-electro-elastic interaction and fracture behavior of 

magneto-electro-elastic composites [2'3] . 

The development of piezoelectric-piezomagnetic composites has its roots in the early work of 

Van Suchtelen [4] who proposed that the combination of piezoelectric-piezomagnetic phases may 

exhibit a new material property--the magnetoelectric coupling effect. Since then, the 

magnetoelectric coupling effect of BaTiO3-CoFe204 composites has been measured by many 

researchers. Much of the theoretical work for the investigation of magnetoelectric coupling effect 

has only recently been studied [1 ~ 3,5 ~ 13]. TO our knowledge, the magneto-electro-elastic dynamic 

behavior of magneto-electro-elastic composites with an interface crack subjected to harmonic anti- 

plane shear waves has not been studied. 

In this paper, the behavior of an interface crack in magneto-electro-elastic composites 

subjected to under harmonic elastic anti-plane shear waves is investigated for the permeable 

electric boundary by use of a somewhat different method, named as the Schmidt method[! 4'15] . 

The Fourier transform is applied and a mixed boundary value problem is reduced to a pair of dual 

integral equations. To solve the dual integral equations, the jump of the displacements across the 

crack surfaces is expanded in a series of Jacobi polynomials. This process is quite different from 

those adopted in Refs. [ 2 ,3  ] as mentioned above. Numerical solutions are obtained for the stress 

intensity factors. 

1 Formulation of the Problem 

It is assumed that there is an interface crack of length 21 between two dissimilar magneto- 

electro-elastic composite half planes as shown in Fig. 1. In this paper, the harmonic elastic anti- 

plane shear stress wave is vertically incident. Let co be the circular frequency of the incident 

YT l 
~1~ ~ X r, 

1 -[" l 2 

Fig. 1 An interface crack be- 

tween two dissimilar 

magneto-electro-elastic 

composite half planes 

( 1 ) ( x , O + )  (2) (X , 0 -  ) Z- 0 T y z = V y z = - -  

§ 
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wave. - r0 is a magnitude of the incident wave. In what 

follows, the time dependence of all field quantities assumed to 

be of the form e -i~ will be suppressed but understood. The 

piezoelectric/piezomagnetic boundary-value problem for anti- 

plane shear is considerably simplified if we consider only the 

out-of-plane displacement, the in-plane electric and the in- 

plane magnetic fields. So the boundary conditions of the 

present problem are ( In  this paper ,  we just consider the 

perturbation fields). 

(I x l ) ,  
(1) 

(I x I >  / ) ;  

(I x (2 )  



Interface Crack in Magneto-Electro-Elastic Composites 19 

{r ( i ~ ( x , 0 + )  = r  
8~2i(x,O_ ) (t x I_< oo); (3) 

B(y!) (x  ,0 + ) 
d 

w ( 1 ) ( x , y )  = w ( 2 ) ( x , y )  = 0 for (x  2 + y2)1/2___~ oo, (4) 

w h e r e ,  -(:ki), D(ki) and B(k i) (k  = x ,  y ,  i = 1 , 2) are the anti-plane shear stress, in-plane electric 

displacement and in-plane magnetic flux, respectively, w (1) , #(i) and r are the mechanical 

displacement, the electric potential and the magnetic potential, respectively. Note that all 

quantities with superscript i ( i = 1 ,2)  refer to the upper half plane 1 and the lower half plane 2 as 

in Fig. 1, respectively. In this paper, we only consider that ro is positive. 

The constitutive equations can be written as 

,k = ,'~,k + .k + ql~ ) ~k ) ( k  x , y ; i  1 , 2 ) ,  (5) 

= ~15 w,k - ,~ - w,k ( k  = x , y ; i  = 1 , 2 ) ,  (6) 
B(i) (i) (i) A(i)  rh(i) ( i ) . t , ( i )  

= q15 W,k  -- t t l l  7",k -- /211 tP',k (k  = x , y ; i  = 1 , 2 ) ,  (7) 

where c~ ) is shear modulus, e~ ) is piezoelectric coefficient, el~ ) is dielectric parameter, q~) is 

piezomagnetic coefficient, d l~ ) is electromagnetic coefficient, /z~) is  magnetic permeability. 

The anti-plane governing equations are 

C(4~ ) V 2 w ( i )  -4- el~ ) V 2 r  + q~) V 2 r  p ( i )  ~ 2 w ( i )  = Ot 2 ( i  = 1 , 2 ) ,  (8) 

e~ ) 7 2 w ( i )  - e~ )7 2 r  _ d~)72~b(1) = 0 ( i  = 1 , 2 ) ,  (9) 

ql~ ) 7 2 W  (i )  - d~  ) V 2 ~  (i)  - ,ul~ ) V2~b (i)  = 0 ( i  = 1 , 2 ) ,  (10) 

where 7 2 = ~2/~X2 + ~2/0y2 is the two-dimensional Laplace operator, p(1) is the density of the 

piezoelectric/piezomagnetic materials. Because of the assumed symmetry in geometry and 

loading, it is sufficient to consider the problem for 0 ~< x < oo, _ oo ~< y < oo only. A Fourier 

transform is applied to Eqs. (8) - (10) .  It is assumed that the solutions are 

" W ( 1 ) ( x ' Y )  = --~ 0 A l ( S ) e - r " c ~  

�9 (1) ~(1) `4(1) . 0 )  2 f| 
# ( l ) ( x , y  ) /~11 ~15 - - t * l l  t/15 W ( 1 ) ( x , y ) +  J B l (S ) e_SYcos ( sx )d s ,  

= ~ 1 i  -S~13~ ~ 0 
r Pt l l  -- t~ll 

q(1).O) ,4(1) ~(1) 2 i =  15 r -- U'll t;15 (1)[  Cl (S )e -Syeos ( s x )d s  
~ ( ' ) ( ~ , Y )  = ~ 1 ~  - S Z ~ -  w ~ x ' Y )  + ~ -  0 

r ttZll -- t~ll 

( y  I> 0 ) ;  (11) 

" w ( 2 ) ( x ' Y )  = --~ o A 2 ( s ) e r ~ Y c ~  

(2) ~(2) ../(2) ~(2) 2 ('| 
# ( 2 ) ( x , y  ) = /~H~2)~15 ---~11.~2~-t/15 W(2) ( X  ' Y) + ~-Jo B 2 ( s ) e ' Y c ~  

r /Xll -- ~11 

~(2) ~(2) .4(2) ~(2) 2 ~| 
( 2 ) ( x  ,Y) = t /15~2)r  -- - ~--'~'~t~ll c15 W(2) / I ,X , ' y )  + --~.J 0 C2(s)eSye~ 

r /Zll  " t*ll 

( y  ~< 0 ) ,  (12) 

where A l ( S ) , B l ( S ) ,  C l ( S ) , A 2 ( s ) , B z ( s )  and C2(s)  are unknown functions. 
(1) a2q~l) 

~,~ = ~ - ~ , ~ / c ~ ,  c~ = / 1 ) / / ~ > ,  ~(1> = c~) + ~ei_____z_5 + - - ,  
tt o t~ 0 
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~(1) (I)  . / (1)2 (1) (1) .4(1) ~ (1) ~(1) ~(1) ,_/(1) ~ (1) 
0,0 = ~11 /211 -- U'll , a l  = /All el5 -- U'll t/15 ~ a 2  = t/15 ~11 - U'll ~15 

(2) ~ ~(2) 
-- ~ = - -  u'5 t/15 �9 },,2 = .52 (.O2/C92, C 2 = /2(2) / tO(2)  /2(2) C(442) + a4e15  + - - ,  

a3  a 3 

~ ( 2 ) .  (2) d (2 )  2 . (2)~(2)  A ( 2 ) ~ ( 2 )  ~ ( 2 ) ~ ( 2 )  A(2)~(2 )  
a3  = r /~11 - t r l l  , a 4  = /~11 ~15 - t~ll t/15 ~ 0,5 = t/15 ~11 - t*ll ~15 �9 

So from Eqs. (5) ~ (7 ) ,  we have 

2 | c~ ) a 1 e l5  a 5 
( 1 ) ( x ' Y )  = -- •1 + - -  + Al(s )e  -r'y + 

~ yz 0 ao 

s[ e~]) Bl(S) + q~) Cl(S) ]e-'Y}cos(sx)ds, (13) 

2 f "  [ e~ )B l (S )  j(1) C,(s)]e_SYcos(.sx)ds ' (14) = $ + t t l l  
-s  o 

(1) X 2 ~oo I- . ( 1 )  (1) Cl(S)]e-Sycos(sx)ds, ( 1 5 )  By ( , y )  = ~-Jo $kall Bl(s )  + /211 

(2)," 2 | a4e15  a 5 
k x , Y )  = )'2 > + - -  + A 2 ( . 5 )  + 

0 a3  

S [ ~(2) B 2 (  .5 ) v  15 + q~g) C2(s)]e'Y}cos(sx)ds, ( 1 6 )  

2 f -  (2> .(2> C2(s)]e,rcos(sx)d.5, (17) - sic11 B2(s) + "11 D~2)(x'Y) = --no 

2 f  | r . ( 2 ) B 2 ( . 5 )  + ( 2 > 6 2 ( $  B(y2)(x'Y) = - nJo  .skall /211 )]eSYcos(sx)d.5. (18) 

To solve the problem, the jumps of the displacements, the electric and the magnetic potentials 

across the crack surfaces are defined as follows: 

f ( x )  = w ( ' ) ( x , 0  +) - w(2) (x ,0 - ) .  (19) 

Substituting E q s . ( l l )  ~ (12 )  into Eq . (19 ) ,  and applying the Fourier transform and the 

boundary conditions (2) ~ (3 ) ,  we can obtain 

f ( s )  = Al(S) - A2(s ) ,  (20) 

a lA l ( s )  - a4A2(s) + Bl (s )  - B2(s) = 0, (21) 
ao 0,3 

a2Al(S)  - a s A 2 ( s )  + C 1 ( 8 )  - C 2 ( . 5 )  = 0 .  (22) 
ao a3 

Substituting Eqs. (13) - (18) into FXlS. ( 1 ) ~ (3 ) ,  we can obtain 

( (1) a2q~])] 
- C ~ ) +  - - a l e l 5  + 7 ,A , ( s )  _ s e ~ l ) B l ( S )  _ sqls(1) C 1 ( . 5 ) _  

a o  ao ] 

_ ~(2) ~ _(2)  

- -  ~'5 ~/15 } (2) B 2 ( s )  s q ~ ) C 2 ( s )  0 ( 2 3 )  C(442) + u'4~15 + ) t 2 A 2 ( s )  -- se l5  -- = , 
a3  a3  / 

B2(.5) + C2(.5) : o ,  (2,,) e ~ )B l (S )  + di~)Cl(s) + ~11 

d(')Ba(s) + /2~)C,(.5) + d}2)B2(.5) + /2}2) C2($ ) 0. (25) 11 = 

By solving six Eqs.(20) ~ (25)  with six unknown functions A l ( s ) , B l ( s ) , C l ( s ) ,  
A 2 ( s ) ,  B2 ( s ) ,  C2 ( s ) and applying the boundary condition ( 1 ) to the results, we can obtain: 

--~ o gl (s) f (s)cos(sx)d.5  = - ro (0 ~< x ~< l ) ,  (26) 
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f |  = 0 (x > l) ,  (27) 0 
where gx (s )  is a known function (see Appendix). ]imga_ ( s ) /s  = fla. Where fli is a constant, 

which depends on the properties of the materials (see Appendix). When the properties of the 

upper and the lower half planes is the same, fll = - c~ )/2. To determine the unknown functions 

. f ( s ) ,  the dual-integral equations (26) and (27) must be solved. 

2 So lut ion  of the  Dual  Integral  Equat ions  

To solve the dual integral equations (26) and (27) ,  the jump of the displacements across 

the crack surfaces is represented by the following series: 

2 f ( x )  : ",-2,-2~ o(I/2,,/2) 1 - (0 ~< x ~< l)  , (28) 
n = l  

n(1/2,1/2) / ~. 'X where b, are unknown coefficients to be determined and r ,  ~ ~ / a r e  a Jacobi polynomial [16] . 

The Fourier transform of Eq. (28) is El71 

ff(s) : 2 b a G ,  1 j 2 , _ l ( s / )  C, : 2 4 ~ ( -  1) " - 1 F ( Z n  - 1/2) (29) 
. . ,  ' (2n 2) ! ' 

where F( x ) and J ,  ( x ) are the Gamma and Bessel functions, respectively. 

Substituting Eq. (29) into Eqs. (26) - (27) ,  Fxl. (27) has been automatically satisfied. 

After integration with respect to x in [ 0, x ] ,  Eq. (26) reduces to 

2..i baG,,f | g'(s)J2"-l(sl)sin(sx)ds s i _ ~r0x2 (30) 

From the relationship [161 

I s i n [ - ~  b/a)]  (a > b),  
f'+ J.(sa)sin(bs)ds = | a"sin(n~/2) (31) 

o . . . . . . .  (b > a ) ,  
ln[b + ~ c ~ - -  a2]" 

the semi-infinite integral in Eq, (30) can be modified as 

f :  1 [ i l l  + (gl(s'---~) - s  ill)]J2n-1 ($/)sin(sx)ds 

Thus the semi-infinite integral in Eq. (30) can be evaluated directly. Equation (30) can now be 

solved for the coefficients b. by the Schmidt method [14'15] . The method is omitted in the present 

work. It can be seen in Ref. [ 14]. 

3 I n t e n s i t y  F a c t o r s  

The coefficients b, are known, so that the entire perturbation dynamic stress field, the 

perturbation electric displacement and the magnetic flux can be obtained. However, in fracture 

(1) the perturbation electric mechanics, it is of importance to determine the perturbation stress r .  , 

displacement D~ 1) and the magnetic flux _yR (1) in the vicinity of the crack tips . In the case of the 

(1) r)(1) and B (~) along the crack line can be expressed respectively as present study, r y= , - y  

2 | ** s (s) j2"-l(Sl)c~ (1)(x,O) _.~-~jbnGn f gl (32) Z'y z = 
n =  1 d O  
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D(r')(x,O) = 2 2 b , G , f  | g z ( s ) j2 ,_ l ( s l ) cos (x s )ds ,  (33) 
~ ~ = l  0 S 

B~I ) (x ' 0 )  = 2 = g3(-s)j2n-l(sl)c~ (34) 

where g z ( s )  and g3 ( s ) are known functions (see Appendix). !img2 ( s ) / s  = B2. !img3 ( s ) / s  

= /33. Where/32 and/33 are two constants which depend on the properties of the materials (see 

Appendix). When the properties of the upper and the lower half planes is the same, 
/32 ~ (1) / , - )  ( 1 ) / , ' )  15 / ' ~  and/33 By examination Eqs, (32) ~ (34) the singular parts of the = -  = -  q 1 5  -'-. 
stress field, the electric displacement and the magnetic flux can be obtained respectively from the 

relationship['63 

[cos[ n arcsin( b / a  )3 

;o ~ j ~ / ~ _ ~ _ ~  ( a  > b ) ,  
= ( 3 5 )  Jn(sa)s in(bs)ds  I . - - - - - - a % i n ( n r r / 2 )  - - -  (b > a) .  

L a2]" 
The singular parts of the stress field, the electric displacement and the magnetic flux can be 

expressed respectively as follows (x  > l)  : 

2/31 2 
"C = - - -  b n G n H n ( x ) ,  (36) 

7~ n = l  

a = l  

B = - --2/3326nGnH,(x) , (38) 
n = l  

( _  I )" - ' /2"-1  
where H,,(x) = ~ x  z _ 12[x + ~ x  z _ / 2 1 2 n - , "  

We obtain the stress intensity factor K as 

4/31 ~ P(Zn - 1/2)  
K = lim ; , /2(x - l ) .  r = - - - ~ b .  (39) 

._ , .  ~ = (2n - 2)]  

We obtain the electric displacement intensity factor K ~ as 

~ P ( 2 n  - 1/2)  t32 K ~ = lim . / 2 ( x  - I ) ' D  = -  4/3---L b. (40) 
.-t* ~ (2n 2) l - fl-~l K" 

We obtain the magnetic flux intensity factor K n as 

K 8 = lira ~/2(x - l ) . B  = -  4 / 3 3 ~  -~. P ( 2 n  - 1/2)  /33K. (41) 
( 2 n - 2 ) !  - /3, 

4 C o n c l u s i o n s  

As discussed in Refs. [ 12 ~ 15 ] ,  it can be seen that the Schmidt method is performed 

satisfactorily if the first ten terms of infinite series in Eq. (30) are retained. The behavior of the 

sum of the series keeps steady with the increasing number of terms in Eq. (30) .  The 

properties r3'9'1~ of materials are assumed to be ~44 ~(') = 4 4 . 0 ( G P a ) ,  elsO) = 5 . 8 ( C / m 2 ) ,  ~11~(1) = 

5.64 x 10-9(C2/Nm 2) q}~) 275 0 (N/Am)  . , / (1)  0.005 X 10-1(Ns/VC) /211 ) 
, = �9 , ~ 1 1  = , = 

297.0 x l0-6(Ns2/C 2) c~  ) 54 .0(GPa)  .(2) 7 . 8 ( C / m  2) .(2) 3 .64 x 
- -  , = , ~ 1 5  = ) r  = 
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10-9(C2/Nm2), q~2) = 175 .0 (N /Am) ,  t~ll'~(2) = 0.008 • 10-9(Ns/VC) , ~2 )  = - 197,0 x 

10-6(Ns2/C2). At l <~ x <~ l , y  0, it can be obtained that (1)/,. is very close to negative - -  -~ "Cyz * ' - 0  

unity. Hence, the solution of present paper can also be proved to satisfy the boundary conditions 

( 1 ) .  The numerical results of the present paper are shown in Figs. 2 - 4. 

1.2 
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Fig.2 The stress intensity factor versus Fig. 3 

wl/c for the interface crack 
The electric displacement intensity 

factor versus col/c for the interface 

crack 

From the results, the following observations are 
1.2 

very significant: 

( i ) The dynamic stress intensity factor depends 0.9 

on the material properties for the anti-plane shear 

interface crack fracture problem in magneto-electro- ~ 0.6 

elastic composites. This is the same as the anti-plane 

shear fracture problem in the general elastic materials. 03 

The electro-magneto-elastic coupling effects can be 
0.0 

obtained as shown in Eqs. (40) and (41) .  The electric 

displacement and the magnetic flux intensity factors 

depend on the length of the crack, the wave velocity, Fig .4 

the circular frequency of the incident waves and the 

properties of the magneto-electro-elastic composite 

materials. It can be shown in Eqs. (40) and (41) .  

I I I I I 

0 1 2 3 4 5 6 7 8 
col/c 

The stress intensity factor versus 

wl/c for a crack in the homo- 

geneous materials 

( 11 ) The dynamic stress intensity factor tends to increase with the increase in the circular 

frequency of the incident waves, until reaching a maximum at col/c ~ 0 . 8 ,  then it decreases 

oscillating in magnitude as shown in Fig. 2. For the electric displacement and the magnetic flux 

intensity factors, they have the same changing tendency with the frequency of the incident waves 

as the stress intensity factors as shown in Eqs. ( 4 0 )  and ( 4 1 ) .  The results of the electric 

displacement and the magnetic flux intensity factors can be directly obtained from the results of 

the stress intensity factors through Eqs. (40) and (41) .  Here, it is omitted. 

( iii ) The solution of this problem can be returned to the static solution for r = 0. From 

the results, it can be shown that the stress intensity factor is equal to a unit when w l / c  = 0 as 

shown in Fig. 2. This is consistent with the fracture problem in the general elastic materials for 
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the anti-plane shear fracture problem.  

( iV ) When the properties of  the upper and the lower half  planes are the same,  the numerical 

solution can be also obtained as shown in Fig.  4.  The stress intensity factor is equal to a unit when 

oJl/c = 0 as shown in F i g . 4 .  However ,  the max imum value of  the stress intensity factors of  the 

interface crack is larger than one of  the cracks in homogeneous materials as shown in Fig. 2 and 

Fig .4.  
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Appendix  

X 1 --  

X 3 -- 

[i a_A 
a o  

a 2  0 

(1) 
- t,44 

(2) 
--  ( C 4 4  

X 4 = 

[Xil(~) 
1"6 = |~21(s) 

a4  - 1  
1 , X 2  = - a 3  ) 

a 5 
- ~  O 1 

(1) (1). 
a l  el5 (1) a2qi5 / 

+ - -  + 71 - sel5 
a o ao / 

o d l  ) 

(2) (2) .  
a g e 1 5  + - -  )#2 --  8e15 - -  asq15 / (2) 

+ a 3  a 3  # 

o d 2) 

o 2) 

x22(s) x23(s) / ---- X 3 X ;  I . 

x32(~) ~M~)J 
g l ( s )  = X l l ( $ ) )  g 2 ( $ )  

H l -- 

H 2 = 

H 3 = 

H 4 = 

g I _- 

R 2 :-  

R 3 = 

R 4 = 

R 5 = 

R 6 = 

fll = 

S 1 = 

5 2 ---- 

- s q ~  ) ] 

.i(1) l ' 
U'll / 

J 

a(2) / 
u ' ! l  i 

, X 5  : X i  _ X 2  X 4 - 1  X 3  ' 

~ 2 1 ( 8 )  ) g 3 ( s )  
/ '% 

= = x31~s/. 
2 z 1 z �9 - , ) . ( I )  (I)c(4~2) (I)  ( )  ( )  C(2) e (1 )  (I) 2 

- z a l i  e15 q15 + e l5  q15 + 44 II q i 5  - 
1 2 2 2 ,-, (1) ( 2 ) ~ ( 1 ) ~ ( 2 )  ( )  ( )  ,.~ (1) (2) ( 1 ) , ( 2 )  

z . e l5  e l5  t / l  5 t / l  5 -t- e l5  q15 ~ z e l 5  c44 q15 a l l  

(2) (1)2~(2) (I)  z ( 2 ) /  (2) ( I )x  
r q l 5  II + e l5  c44 I ,~t l l  -t- /LII / ,  

( 1 ) [ - . ( 1 )  2 (2) ,.s (2) (2) . . / (2)  ~(2) . . / (2)  z 
C44 a l l  C44 - - . ~ e 1 5  q15 U~ll --  ~44 t~ll - 

2 
" ) , 4 ( 1 ) /  (2) (2) (2) . ( 2 )  q ~ ( 2 ) . / ( 2 ) /  + q15 e l l  . I ,  "<='Jill k e15 q15 + t'44 U'll 

C(I ){  (2) 2 " (2) (2) (2) (2) (2) 2 (1) 
44 e l5  P~11 + C44 ~11 /~11 + e15 /Zl l  + 

(2)/  (2) (I)x c~) (2) (1) o<,)rq~2)'+ C44 i ,~ i i l  "t" /111 11}  ~ i l  /'LII -I" ~ i i  L ) 

1(1) z (2) ~ ( I )~ (1 )  2 ,~ (1) ( i )  (2) ~(1)~(2) i 
-- a l l  C44 + 11 VI5 + ~ f i l  q15 qi5 + i l  715 -- 

(1) (1)..#(2) ,., (2)~(1).1(2) 
el5 q15 t i l l  --~5e15 1/15 ~11 ) 

,-, (1) (2) .,/(2) ~ (2) (2) ../(2) (2) . ( 2 )  z 
- - / ' e l 5  q15 U'll - / . e l 5  q i 5  U'll - C4.4 a l l  

_o.~(1)r ( 1 ) /  (1) (2) ( 2 ) /  (1) (2) ^ ( 2 ) . / ( 2 )  3 
"*11 i. el5 k ql5 + q15 ) + el5 k ql5 + ql5 ) + t;44 "11 , 

q ( 1 ) l f ( 2 )  .~ (1) (2) (2) ~(2)z (2) e ( i )  a (2) 
15 11 + z q 1 5  q15 Vll + ,415 11 + 15 /zu  + 

(1) (2) (2) (2) 2 (2) (2) (1) (2) 
e l5  e l5  /X l l  + e l5  /- t i l  + c44 f i l  /X l i  , 

(2) (2) (2) e(l) ~, (1) ,,, (1) (2) (1) 
C44 f l l  /X l i  -I- i5 /Xl l  -I- zse15 el5 /Xi l  -I- 

(2) 2` (1) c(2)r  ( l )  c(442) (2) (1) el5 #.tli .-I- 44 l i  ~,tll + f i l  /Ai i  

-- c ( l ) r , / ( l ) Z  ,9 . . / (1) ,4(2)  I /(2)  2 / ( l )  ~ (2 )~1 /  (1) (2)%'1 
U, l l  -I-.~U, l i  t~ii at" U'll -- ~ I I  -I- ~II  / [ , / 2 1 1  -I- ~s / J )  

( H I  + /-/2 + /-/3 + / / 4 ) / (  RI + R2 + R3 + R4 + Rs + R 6 ) ;  

(2) ( l ) q  (1)2i5 (2) (1) ( i )  (2) (1) (2) ( 1 ) ~ ( 2 )  
- e l5  f i i  - e l5  e l l  q l 5  q15 + e l5  e i5  q l 5  a l l  - 

C(442) ~(1) ~(1)  .4(2) (1) z (2) .4(2) 
Oi l  t / l  5 tbll  -I- e l5  q l 5  t~  

(1) (2) (2) j ( 2 )  ( l )  ( 2 ) . ( 2 )  z (1) (1) (2) (2) e ( l )  (2)ze(2)  
e15 e l5  q l 5  a l l  -I- e l5  C44 a l l  - e l5  q15 q l 5  ~11 --  15 q15 i l  



2 6  Z H O U  Z h e n - g o n g  a n d  W A N G  B i a o  

= ./(1)J" (1)[" (2)/."s (1) ~ (2 ) )  (2) . . / (2)]  (1 ) (~ (2 )  2 (2) (2) 
$3 U, ll t_ t,15 L t;15 ~,zLql5 + t/l 5 + C44 Cl'll .a + q15 t:'15 + C44 e l l  } ,  

~(1)2 (2) (2) ( 1 )  2 (2) 2, (2) (1) ( 2 ) ~ ( 2 ) .  (2) 
$4 = -- "~15 t::15 /'s -- el5 el5 PLll - el5 044 r Pil l  - 

(1) 2 (2) (1) e(l)e(2)2 (l)  (1) (2 )~ (2 ) .  (1) 
el5 el5 /211 - 15 15 ~tll  - el5 r r-ll /t.~ll 9 

c(l)Yd(1)2e(2) .(I)/ (2),4(2) (2) (2)'~ 
$5 = 44 I. 11 15 + ~11 t. e15 ~11 -- q15 e l l  / + 

e(1) F (2),4(2) (2 ) /  (2) (1)13 
11 Lq l5  U'll -- el5 ~,/211 + [211 ) J } ,  

fiE = -- ( 5 1  + $2 + 53  + $4  + $ 5 ) / / ( R 1  + R2 + R3 4", R4 + R5 + g 6 ) ;  

YI e(1) ~(l)z ~(2) e ( l )  ~ ( i )  ~(2) 2 _ e(2) ~( l )Zd(2)  . (1)  ~(1) ..(2) ../(2) 
= 11 t/15 t/15 + 11 t/15 t/15 15 t/15 11 ~15 t/15 t/i5 t~ll - 

(2) (1) ( 2 ) . . / ( 2 )  _(2)~( I ) ,4 (1 )  2 
el5 q15 q15 t4'll - t;44 t/15 t#ll 

(2) (2) (l) (2)2e(2) (1) (2) (1 ) .  (2) (2) 2 (1) .  (2) 
]:2 = q~l)Zq15 el l  + q15 q15 11 + el5 el5 q15 ,~ll + e15 q15 1~11 + 

(2) (1) (1) .  (2) (2) (1) (2) .  (2) 
c44 el l  q15 ,~11 + c44 q15 el l  /~ll ' 

. ( I ) / ~  (1 )~(1 )~(2 )  (2) (1) (2) l) (2) 2 A(2). . .(I) .J(2) 4. ~ ( 2 ) ~ ( 1 ) . ( 2 ) ' ~  
]:3 = - s kLe15 '~15 't15 + e15 q15 ql5 + e~5 q~a + "-'44 t/15 t*ll -- t"44 t;15 /Xll / ,  

e ( l )  z (2) (1) (1) (2) (2) (1) ( 1 )~ (2 )~ (2 )  (1) 
Y4 = 15 q15 / i l l  + el5 e l 5  q15 ~11 + el5 t'44 t~ll /211 , 

]:5 = c ~ ) (  d(I )2~(2)  . ( 1 ) . ( 2 )  (2) . ( 1 )  (2) (2) 
- H ~15 - a l l  a l l  q15 + a l l  el5 /211 + 

(I) (2) �9 (1) (1) , ( 2 )  (1) (2) (2) (1) X 
e l l  ql5 PLll -- el5 ~ l l  /211 + q15 e l l  / I l l  ] ,  

[33 = ( Yx + Y2 + Y3 + Y4 + Y s ) / (  RI + R2 + R3 + R4 + R5 + R 6 ) .  


